激發學生對科學的探究熱情:運用詢問式教學策略加強科學理解和認知能力

27/06/23 15:54 成長因子培訓團隊

激發學生對科學的探究熱情:
運用詢問式教學策略加強科學理解和認知能力

詢問式教學策略是一種教學方法,強調在科學教育中融合主動學習和批判性思維。它包括設計學習活動,使學生觀察實驗、收集證據並構建自己對科學概念的理解(Psycharis, 2013)。本文探討詢問式學習對學生的認知信念、動機、建模指標的使用和概念理解的影響(Psycharis, 2013)。它還檢查了不同類型的詢問,例如確認和結構化詢問,對提高學生在學校科學方面的成就動機的有效性 (Toma, 2022)。此外,本文還討論詢問式學習在促進科學文化發展和高等教育科學課堂中培養科學技能的好處(Mello et al., 2019)。

詢問式教學策略加強科學理解和認知能力

定義詢問式學習

詢問式學習是一種教育策略,通過讓學生執行與科學家常規執行相似的任務,從而讓學生參與科學(Mello et al., 2019)。它超越了科學信息的傳遞,關注學生開展詢問的能力以及他們對科學詢問本質的深刻理解(Psycharis, 2013)。這種方法鼓勵學生提出問題,觀察,收集和分析數據,並根據證據得出結論(Mello et al., 2019)。它促進了高級認知能力的發展,如批判性思維、問題解決和科學推理(Psycharis, 2013)。

詢問式學習的好處

許多研究顯示,與傳統教學相比,詢問式學習在科學教育中的有效性得到了證明。詢問式學習已與提高概念理解、提高學生參與度、增強動機和對科學的積極態度相關聯(Mello et al., 2019; Osisioma & Onyia, 2009)。它促進了科學過程技能的發展,如觀察、數據收集和分析,這些技能對科學詢問至關重要(Mello et al., 2019)。此外,詢問式學習促進了元認知技能的發展,如自我調節和反思,這些對終身學習至關重要(Schraw et al., 2006)。

詢問式學習的類型

詢問式學習有不同的類型,從引導式詢問到開放式詢問。引導式詢問提供更高水平的教師指導,而開放式詢問則允許學生在設計和進行調查時有更多的自主權 (Toma, 2022)。確認詢問和結構化詢問是兩種特定的詢問式學習類型,它們提供不同程度的教師指導 (Toma, 2022)。確認詢問涉及引導學生朝預定結果的方向發展,而結構化詢問為學生探索科學概念提供了更為結構化的框架 (Toma, 2022)。這些類型的詢問對提高學生在學校科學方面的成就動機和成功期望有著不同的有效性 (Toma, 2022)。

挑戰與考量

在教室中實施詢問式學習可能會給教師帶來挑戰。一些已記錄的問題包括缺乏關於什麼是詢問的明確性,缺乏詢問在實際課堂中的實際實施例和沒有明確將詢問與科學內容相關聯(Campbell et al., 2010)。此外,學校和大學中時間的限制可能會使將耗時的詢問活動納入課程變得具有挑戰性 (Bicak et al., 2021)。然而,研究表明,在進行詢問活動之前為學生提供指導可以使他們受益 (Bicak et al., 2021)。為學生提供必要的背景知識和技能可以增強他們從事有意義的詢問體驗的能力。

職業發展和詢問式學習

職業發展在支持教師有效實施詢問式學習方面發揮著至關重要的作用。必須向教師提供促進課堂中詢問的必要知識、技能和資源 (Qablan, 2019)。職業發展項目應涉及教師的核心教學概念,提供機會讓教師發展對詢問式教學策略的理解 (Lotter et al., 2007)。此外,職業發展提供者應明確了解詢問的內涵以及如何將其整合到課堂實踐中(Arriola, n.d.)。

詢問式教學策略是科學教育中有價值的方法,它促進了主動學習、批判性思維和科學技能的發展。它通過設計學習活動來讓學生參與科學研究,觀察實驗、收集證據並構建自己對科學概念的理解。詢問式學習已被證明可以提高學生的概念理解、動機和對科學的參與度。不同類型的詢問,例如確認和結構化詢問,提供不同程度的教師指導,可以增強學生的成就動機。然而,在教室實施詢問式學習可能會帶來挑戰,有效的職業發展在支持教師有效實施詢問式學習方面發揮著至關重要的作用。通過向教師提供必要的知識、技能和資源,詢問式學習可以成功地融入科學教育中,促進學生對科學的理解和認知能力的發展。

已有培訓想法 -> 立刻聯絡培訓顧問
了解更多培訓課程

參考文獻:

  1. Psycharis, S. (2013). Exploring the Effects Of The Computational Experiment Approach To The Epistemic Beliefs, The Motivation, The Use Of Modeling Indicators And Conceptual Understanding In Three Different Computational Learning Environments. Journal of Education and Training Studies, 1(1). https://doi.org/10.11114/jets.v1i1.32
  2. Toma, R. (2022). Confirmation and Structured Inquiry Teaching: Does It Improve Students’ Achievement Motivations In School Science?. Can. J. Sci. Math. Techn. Educ.. https://doi.org/10.1007/s42330-022-00197-3
  3. Mello, P., Natale, C., Trivelato, S., Marzin-Janvier, P., Vieira, L., Almeida, D. (2019). Exploring the Inquiry‐based Learning Structure To Promote Scientific Culture In The Classrooms Of Higher Education Sciences. Biochem Mol Biol Educ, 6(47), 672-680. https://doi.org/10.1002/bmb.21301
  4. Campbell, T., Zhang, D., Neilson, D. (2010). Model Based Inquiry In the High School Physics Classroom: An Exploratory Study Of Implementation And Outcomes. J Sci Educ Technol, 3(20), 258-269. https://doi.org/10.1007/s10956-010-9251-6
  5. Bicak, B., Borchert, C., Höner, K. (2021). Measuring and Fostering Preservice Chemistry Teachers’ Scientific Reasoning Competency. Education Sciences, 9(11), 496. https://doi.org/10.3390/educsci11090496
  6. Tsakeni, M. (2021). Preservice Teachers’ Use Of Computational Thinking To Facilitate Inquiry-based Practical Work In Multiple-deprived Classrooms. EURASIA J Math Sci Tech Ed, 1(17), em1933. https://doi.org/10.29333/ejmste/9574
  7. Chen, C., Tseng, D. (2017). “I Give Up and Stop Listening”: Fostering Metacognitive Listening Strategy Awareness In The English Classrooms In Taiwan. ASSRJ, 11(4). https://doi.org/10.14738/assrj.411.3268
  8. Arriola, A. An Examination Of the Relationship Between Professional Development Providers' Epistemological And Nature Of Science Beliefs And Their Professional Development Programs.. https://doi.org/10.15760/etd.3415
  9. Qablan, A. (2019). Effective Professional Development and Change In Practice: The Case Of Queen Rania Teacher Academy Science Network. EURASIA J MATH SCI T, 12(15). https://doi.org/10.29333/ejmste/109016
  10. Ku, K., Ho, I., Hau, K., Lai, E. (2013). Integrating Direct and Inquiry-based Instruction In The Teaching Of Critical Thinking: An Intervention Study. Instr Sci, 2(42), 251-269. https://doi.org/10.1007/s11251-013-9279-0
  11. Foster, H. (2014). Comparison Of Student Achievement Using Didactic, Inquiry-based, and The Combination Of Two Approaches Of Science Instruction. jtte, 2(2), 103-123. https://doi.org/10.12785/jtte/020203
  12. Lotter, C., Harwood, W., Bonner, J. (2007). The Influence Of Core Teaching Conceptions On Teachers' Use Of Inquiry Teaching Practices. J. Res. Sci. Teach., 9(44), 1318-1347. https://doi.org/10.1002/tea.20191
  13. Apthorp, H., Igel, C., Dean, C. (2012). Using Similarities and Differences: A Meta-analysis Of Its Effects And Emergent Patterns. School Science and Mathematics, 4(112), 204-216. https://doi.org/10.1111/j.1949-8594.2012.00139.x
  14. Fiock, H. (2020). Designing a Community Of Inquiry In Online Courses. IRRODL, 1(21), 134-152. https://doi.org/10.19173/irrodl.v20i5.3985
  15. Kennedy, M., Rodgers, W., Romig, J., Mathews, H., Peeples, K. (2017). Introducing the Content Acquisition Podcast Professional Development Process: Supporting Vocabulary Instruction For Inclusive Middle School Science Teachers. Teacher Education and Special Education, 2(41), 140-157. https://doi.org/10.1177/0888406417745655
  16. VanTassel-Baska, J. (2023). The Case For Content-based Curriculum For Advanced Learners. Gifted Child Today, 2(46), 142-145. https://doi.org/10.1177/10762175221149443
  17. Osisioma, I., Onyia, C. (2009). Capturing Urban Middle School Students' Voices On the Use. IES, 2(2). https://doi.org/10.5539/ies.v2n2p3
  18. Schraw, G., Crippen, K., Hartley, K. (2006). Promoting Self-regulation In Science Education: Metacognition As Part Of a Broader Perspective On Learning. Res Sci Educ, 1-2(36), 111-139. https://doi.org/10.1007/s11165-005-3917-8
  19. Estrella, G., Au, J., Jaeggi, S., Collins, P. (2018). Is Inquiry Science Instruction Effective For English Language Learners? a Meta-analytic Review. AERA Open, 2(4), 233285841876740. https://doi.org/10.1177/2332858418767402
  20. Suits, J. (2004). Assessing Investigative Skill Development In Inquiry-based and Traditional College Science Laboratory Courses. School Science and Mathematics, 6(104), 248-257. https://doi.org/10.1111/j.1949-8594.2004.tb17996.x
  21. Dolan, E. (2009). Recent Research In Science Teaching and Learning. LSE, 1(8), 9-10. https://doi.org/10.1187/cbe.08-12-0075
  22. Iatraki, G., Soulis, S. (2021). A Systematic Review Of Single-case Research On Science-teaching Interventions To Students With Intellectual Disability or Autism Spectrum Disorder. Disabilities, 3(1), 286-300. https://doi.org/10.3390/disabilities1030021
  23. Casey, L., Bruce, B. (2011). The Practice Profile Of Inquiry: Connecting Digital Literacy and Pedagogy. E-Learning and Digital Media, 1(8), 76-85. https://doi.org/10.2304/elea.2011.8.1.76
  24. Docherty-Skippen, S., Karrow, D., Ahmed, G. (2020). The Influence Of Hands-on Experimentation and Inquiry-based Learning In Elementary Science And Technology (S&t) Education. Brock Education Journal, 1(29), 24. https://doi.org/10.26522/brocked.v29i1.768
  25. Bauer, S. (2017). The Impact Of the Chukwin Mini-unit On Students’ Understanding Of Natural Selection. The American Biology Teacher, 2(79), 120-127. https://doi.org/10.1525/abt.2017.79.2.120

成長因子培訓團隊